
International Journal of Innovation and Modern Applied Science

Vol. 11 Issue 1, December 2025

Doi :

ISSN No.:

Page | 1
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. XX Issue XX , December 2025

A Review of Malware Analysis Techniques: Static, Dynamic, Forensic, and

Hybrid Approaches

HAITAM AOUAYEJ 1, JAAFAR ABOUCHABAKA 2, SALMANE BOUREKKADI 3

1IBN TOFEIL University , Laboratory of Computer Science Research, Kenitra, Morocco

ABSTRACT: The continuous evolution of malware represents a major challenge for modern

cybersecurity. Attackers increasingly rely on obfuscation, encryption, and anti-analysis techniques

to evade detection, rendering traditional signature-based defenses insufficient. In this context,

malware analysis has become essential to understand threats, extract indicators of compromise, and

support incident response. This manuscript provides a structured review of the main malware

analysis techniques, organized into four complementary levels: triage, static analysis, dynamic

analysis, and advanced reverse engineering. Each method is discussed in terms of methodology, tools,

advantages, and limitations. The review highlights that static analysis provides rapid and safe

insights but is ineffective against sophisticated obfuscation and packing methods. Dynamic analysis

captures runtime behaviors and network communications, though it remains vulnerable to evasion

strategies. Memory and network forensics enhance visibility by revealing hidden processes, fileless

malware, and anomalous connections. Reverse engineering offers the most comprehensive

understanding of malicious logic, yet it is highly time-consuming and requires specialized expertise.

Overall, the findings confirm that no single method is sufficient; instead, hybrid approaches that

integrate static, dynamic, and forensic techniques are required. The study also emphasizes the role

of standardized frameworks and large-scale datasets in improving reproducibility and enabling

automation in malware detection and analysis.

Keywords: malware analysis, static analysis, dynamic analysis, reverse engineering, memory forensics,

network forensics, sandboxing, incident response, MITRE ATT&CK.

1. INTRODUCTION

 Malware has become one of the most prevalent threats in modern cyberspace, targeting individuals,

enterprises, and critical infrastructures. Its rapid evolution, driven by techniques such as obfuscation,

encryption, and the use of living-off-the-land binaries (LOLBins), significantly complicates detection and

defense. Traditional signature-based systems are increasingly insufficient, which underlines the importance

of malware analysis as a cornerstone of cybersecurity.

Page | 2
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

The purpose of this study is to provide a structured review of malware analysis methodologies, synthesizing

results from both academic research and practitioner experience. By examining multiple layers—static

analysis, dynamic analysis, memory and network forensics, and advanced reverse engineering—this paper

identifies strengths, weaknesses, and applicability across different contexts. Static approaches offer rapid

insights but are limited against modern evasion techniques, while dynamic methods capture behavioral

patterns at runtime but face challenges from VM detection (Artem Dinaburg, 2008). Memory and network

analysis complement these approaches by providing visibility into runtime artifacts and malicious

communications. Reverse engineering remains indispensable for advanced persistent threats (APTs),

offering deep technical insights at the cost of time and expertise (Yan Shoshitaishvili).

By aligning the analysis with standardized frameworks such as MITRE ATT&CK (MITRE. (2023). MITRE

ATT&CK: Adversarial tactics, techniques, and common knowledge., n.d.) and leveraging datasets

including EMBER (Hyrum S. Anderson) and SOREL-20M (Richard Harang), this review aims to

contribute reproducible methodologies and comparative insights for both academic researchers and security

operations teams.

2. MATERIALS AND METHODS

This review was conducted through a systematic survey of academic literature, technical reports, and

practitioner blogs related to malware analysis. The methodology was designed to ensure reproducibility

and completeness, and it followed four complementary stages: triage, static analysis, dynamic analysis, and

advanced reverse engineering.

Literature Search Strategy. Academic articles, conference proceedings, and technical whitepapers

published between 2010 and 2024 were selected from digital libraries such as IEEE Xplore, ACM Digital

Library, and arXiv. Keywords including “malware static analysis,” “dynamic analysis,” “memory

forensics,” and “reverse engineering malware” guided the search. The inclusion criteria prioritized papers

that described methodologies, comparative studies of tools, and practical case studies (Daniele Ucci), (L.

Nataraj).

Tools and Environments. Widely adopted frameworks and toolkits were examined to illustrate the

implementation of analysis methods. For static analysis, tools such as IDA Pro, Ghidra, Binary Ninja, and

capa were included (Hex-Rays. (2023). IDA Pro disassembler and debugger., n.d.), (National Security

Agency. (2019). Ghidra Software Reverse Engineering Framework., n.d.). Dynamic analysis relied on

sandbox environments such as FlareVM and REMnux, complemented with monitoring tools like Procmon,

Sysmon, and Wireshark (Case Andrew). Memory forensics tools such as Volatility and Rekall were

integrated for the extraction of runtime artifacts (Case Andrew).

Reference Frameworks and Datasets. To standardize classification, the MITRE ATT&CK framework was

adopted as a mapping reference for tactics and techniques (MITRE. (2023). MITRE ATT&CK: Adversarial

tactics, techniques, and common knowledge., n.d.). Public malware datasets such as EMBER (Hyrum S.

Anderson), SOREL-20M (Richard Harang), and BODMAS were included to support machine learning-

based evaluations.

Synthesis Approach. Each method was described along four axes: methodology, tooling, advantages, and

limitations. Comparative tables were used to highlight differences across approaches, while case studies

provided practical context. This structure ensures that the findings are accessible to both academic

Page | 3
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

researchers and professionals in Security Operations Centers (SOC) and Digital Forensics and Incident

Response (DFIR) teams.

3. RESULTS AND DISCUSSION

This section may each be divided by subheadings or may further divided into next heads as shown below.

3.1. Static Analysis

Static analysis refers to the examination of malware binaries without execution. Techniques include string

extraction, header inspection, entropy measurement, and disassembly. These methods enable analysts to

identify imported libraries, suspicious API calls, and embedded resources (Hex-Rays. (2023). IDA Pro

disassembler and debugger., n.d.), (National Security Agency. (2019). Ghidra Software Reverse

Engineering Framework., n.d.). Tools such as IDA Pro, Ghidra, Binary Ninja, and capa remain the most

widely adopted for this purpose.

The advantages of static analysis lie in its speed, safety, and ability to provide initial insights. It allows the

identification of potential persistence mechanisms, cryptographic functions, and obfuscation indicators

(Daniele Ucci), (L. Nataraj). Moreover, the extraction of features such as control flow graphs and opcode

frequencies support the application of machine learning models for malware classification (Hyrum S.

Anderson). YARA rules are also commonly generated from static signatures, enabling rapid detection in

SOC environments.

However, static methods face critical limitations. Packed or encrypted samples often hide their true

behavior, rendering static disassembly incomplete or misleading. Furthermore, advanced obfuscation

techniques such as control-flow flattening and string encryption reduce the interpretability of static results.

These drawbacks emphasize the need for complementary methods. In conclusion, static analysis remains

indispensable for triage and IOC extraction but cannot serve as a standalone technique in modern threat

landscapes.

3.2. Dynamic Analysis

Dynamic analysis involves executing malware in a controlled environment to observe its behavior at

runtime. Sandboxing platforms such as FlareVM, REMnux, and ANY.RUN, combined with tools like

Procmon, Sysmon, and Wireshark, are widely used to capture changes in the file system, registry, processes,

and network traffic (Case Andrew).

The results show that dynamic methods are highly effective for detecting persistence mechanisms,

command-and-control (C2) communications, and decrypted payloads (MITRE. (2023). MITRE ATT&CK:

Adversarial tactics, techniques, and common knowledge., n.d.), (Case Andrew). API call monitoring and

system call tracing provide detailed behavioral fingerprints that can be used for clustering malware families.

These observations are often mapped to the MITRE ATT&CK framework to classify adversarial techniques

(MITRE. (2023). MITRE ATT&CK: Adversarial tactics, techniques, and common knowledge., n.d.).

Nonetheless, dynamic analysis suffers from significant challenges. Modern malware increasingly integrates

anti-analysis mechanisms, such as VM detection, timing delays, and environment fingerprinting, which

significantly reduce the reliability of sandbox-based results (Artem Dinaburg, 2008). In addition, certain

behaviors are triggered only under specific conditions, requiring interactive or guided execution.

Page | 4
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

Critically, dynamic analysis provides a realistic view of runtime activities but requires hardened

environments. Countermeasures such as stealth instrumentation, bare-metal sandboxes, and hardware-

assisted monitoring are being explored to bypass evasion techniques (Clemens Kolbitsch, Paolo Milani

Comparetti, Christopher Kruegel, Engin Kirda, Xiaoyong Zhou, XiaoFeng Wang). While highly valuable,

dynamic analysis must be carefully integrated with static and forensic methods to deliver comprehensive

insights.

3.3 Memory and Network Forensics

Memory forensics has emerged as a powerful technique to detect hidden malware components, fileless

infections, and runtime artifacts that evade traditional methods. Tools such as Volatility and Rekall allow

investigators to reconstruct process lists, extract injected code, and analyze kernel modules (Case Andrew).

Similarly, memory acquisition tools like WinPMem and LiME are essential for capturing evidence during

live incident response.

Research demonstrates that memory analysis is particularly effective for uncovering in-memory persistence

mechanisms and retrieving decrypted configurations. Fileless malware campaigns, which rely on

PowerShell or WMI for execution, can often only be detected through memory snapshots.

In parallel, network forensics focuses on analyzing traffic generated by malware. Tools like Wireshark and

Zeek enable analysts to detect anomalies, C2 protocols, and domain fronting techniques (Case Andrew).

The correlation of captured traffic with MITRE ATT&CK techniques supports standardized threat

intelligence reporting (MITRE. (2023). MITRE ATT&CK: Adversarial tactics, techniques, and common

knowledge., n.d.).

Despite their effectiveness, both memory and network analysis face limitations. Memory forensics requires

specialized expertise and careful handling to avoid altering evidence (Michael Hale Ligh, Andrew Case,

Jamie Levy, AAron Walters). Network analysis is constrained when malware uses encrypted channels,

covert DNS tunneling, or fast flux domains. Nonetheless, these approaches play a central role in DFIR by

bridging the gap between static/dynamic observations and real-world artifacts.

3.4 Reverse Engineering and Anti-analysis

Reverse engineering represents the most comprehensive yet complex approach to malware analysis. By

disassembling or decompiling binaries, analysts can reconstruct malicious logic and understand its full

capabilities. Tools such as IDA Pro, Ghidra, Radare2, x64dbg, and WinDbg are essential for this process

(Hex-Rays. (2023). IDA Pro disassembler and debugger., n.d.), (National Security Agency. (2019). Ghidra

Software Reverse Engineering Framework., n.d.).

This method enables the extraction of encryption algorithms, configuration decryption routines, and

command execution logic (Daniele Ucci), (Thomas Raffetseder, Christopher Kruegel & Engin Kirda).

Advanced techniques such as symbolic execution and taint analysis assist in uncovering hidden behaviors,

while automated unpackers facilitate the analysis of packed binaries.

However, reverse engineering is highly time-consuming and requires significant expertise. Malware

authors actively implement anti-analysis techniques such as debugger detection, control-flow obfuscation,

and API redirection (Artem Dinaburg, 2008). For example, stealth breakpoints have been observed in

advanced samples to mislead analysts during debugging.

Page | 5
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

From a critical perspective, reverse engineering is indispensable for APT investigations, malware family

attribution, and threat intelligence. Yet, due to its complexity, it is impractical for large-scale automation.

Future perspectives point toward AI-assisted reverse engineering and improved automated deobfuscation

frameworks, which may help reduce manual workloads (Yan Shoshitaishvili).

3.5 Hybrid and Automated Analysis

Hybrid analysis has been proposed as a solution to overcome the limitations of standalone methods. By

combining static feature extraction with dynamic behavior monitoring, hybrid approaches provide a more

holistic understanding of malware. For instance, static signatures can rapidly classify known families, while

dynamic execution reveals runtime payloads and network indicators.

Automated pipelines further enhance this process by integrating multiple tools into unified workflows.

Cloud-based sandboxes allow scalability and collaborative analysis, while frameworks such as Cuckoo

Sandbox demonstrate how hybrid models can operate in practice.

The role of artificial intelligence has also expanded significantly. Machine learning models trained on large

datasets such as EMBER (Hyrum S. Anderson) and SOREL-20M (Richard Harang) achieve promising

results in predicting malicious behavior. Deep learning approaches leverage opcode sequences, control flow

graphs, and API call graphs to detect unknown malware variants with high accuracy.

Nevertheless, hybrid and AI-based approaches face critical challenges, including adversarial evasion,

model interpretability, and the need for constant retraining with updated datasets. Despite these issues,

hybrid and automated methods represent the future of malware analysis, enabling SOCs and DFIR teams

to scale operations and improve detection.

3.6 Cross-method Discussion

The comparative analysis across static, dynamic, forensic, and reverse engineering approaches

demonstrates that no single method can provide a complete solution to modern malware threats. Each

technique offers unique insights but also exhibits inherent limitations in terms of accuracy, scalability, and

practicality. To better illustrate these findings, the results of the review are organized into two

complementary comparative tables.

Table 1. Malware Analysis Methods

Method Example Tools Advantages Limitations References

Static
Analysis

IDA Pro, Ghidra,
Binary Ninja,

capa

Fast, safe, allows
initial classification,

signature/IOC
extraction

Ineffective
against

obfuscation,
packing,

encryption

(Daniele Ucci), (L. Nataraj),
(Hex-Rays. (2023). IDA Pro

disassembler and debugger.,
n.d.), (National Security
Agency. (2019). Ghidra

Software Reverse
Engineering Framework.,

n.d.), (Hyrum S. Anderson),
(Thomas Raffetseder,

Christopher Kruegel & Engin
Kirda)

Page | 6
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

Dynamic
Analysis

FlareVM,
REMnux,
Procmon,
Sysmon,

Wireshark,
ANY.RUN

Observes real
behavior, detects

persistence,
network traffic,

decrypted payloads

Vulnerable to
anti-VM/sandbox

detection,
requires strong

isolation

(MITRE. (2023). MITRE
ATT&CK: Adversarial tactics,

techniques, and common
knowledge., n.d.), (Artem

Dinaburg, 2008), (Case
Andrew), (Clemens

Kolbitsch, Paolo Milani
Comparetti, Christopher

Kruegel, Engin Kirda,
Xiaoyong Zhou, XiaoFeng

Wang)

Memory
Forensics

Volatility, Rekall

Detects fileless
malware, recovers
runtime artifacts

and hidden
processes

Complex
acquisition,

requires expertise
and advanced

tooling

(Case Andrew), (Michael
Hale Ligh, Andrew Case,

Jamie Levy, AAron Walters)

Network
Forensics

Wireshark, Zeek

Identifies C2
protocols,
anomalies,

encrypted tunnels

Limited visibility if
malware uses

covert channels
or strong

encryption

 (MITRE. (2023). MITRE
ATT&CK: Adversarial tactics,

techniques, and common
knowledge., n.d.)

Reverse
Engineering

x64dbg,
WinDbg,

Radare2, Ghidra

Deep
understanding of

malware logic,
enables unpacking

and decryption

Time-consuming,
high expertise

required,
frequent anti-

analysis
mechanisms

(Daniele Ucci), (Hex-Rays.
(2023). IDA Pro disassembler

and debugger., n.d.),
(National Security Agency.

(2019). Ghidra Software
Reverse Engineering

Framework., n.d.), (Thomas
Raffetseder, Christopher
Kruegel & Engin Kirda),

(Artem Dinaburg, 2008), (Yan
Shoshitaishvili)

Table 1 presents the technical perspective by summarizing the main tools, strengths, and weaknesses of

each method. This offers a structured view of how different techniques operate at the analytical level. Table

2 extends this discussion to the operational domain by evaluating scalability, automation potential, expertise

requirements, and applicability within SOC and DFIR environments. Together, these tables bridge the gap

between theoretical capabilities and real-world usability, providing both researchers and practitioners with

a dual framework for understanding and applying malware analysis techniques.

Page | 7
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

Table 2. Comparative Evaluation of Malware Analysis Methods

Method Scalability Automation
Expertise
Required

SOC/DFIR
Relevance

References

Static Analysis High High
Low to

Moderate

Strong for
triage, IOC
extraction

(Daniele Ucci), (L. Nataraj),
(Hex-Rays. (2023). IDA Pro

disassembler and debugger.,
n.d.), (National Security
Agency. (2019). Ghidra

Software Reverse
Engineering Framework.,

n.d.), (Hyrum S. Anderson),
(Thomas Raffetseder,

Christopher Kruegel & Engin
Kirda)

Dynamic Analysis Moderate Moderate Moderate

Strong for
behavior

profiling, C2
detection

(MITRE. (2023). MITRE
ATT&CK: Adversarial tactics,

techniques, and common
knowledge., n.d.), (Artem

Dinaburg, 2008), (Case
Andrew), (Clemens

Kolbitsch, Paolo Milani
Comparetti, Christopher

Kruegel, Engin Kirda,
Xiaoyong Zhou, XiaoFeng

Wang)

Memory Forensics Low Low High

Essential for
fileless

malware and
live response

(Case Andrew), (Michael
Hale Ligh, Andrew Case,

Jamie Levy, AAron Walters)

Network Forensics Moderate Moderate Moderate

Valuable for
C2 detection,

lateral
movement

analysis

(MITRE. (2023). MITRE
ATT&CK: Adversarial tactics,

techniques, and common
knowledge., n.d.)

Reverse
Engineering

Very Low Very Low Very High

Indispensable
for APT

attribution,
threat

intelligence

(Daniele Ucci), (Hex-Rays.
(2023). IDA Pro disassembler

and debugger., n.d.),
(National Security Agency.

(2019). Ghidra Software
Reverse Engineering

Framework., n.d.), (Thomas
Raffetseder, Christopher
Kruegel & Engin Kirda),
(Artem Dinaburg, 2008),

(Yan Shoshitaishvili)

Hybrid/Automated High High Moderate
Crucial for

modern SOC
(Hyrum S. Anderson),

(Richard Harang), (Clemens

Page | 8
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

pipelines and
scalable

detection

Kolbitsch, Paolo Milani
Comparetti, Christopher

Kruegel, Engin Kirda,
Xiaoyong Zhou, XiaoFeng

Wang), (Yan Shoshitaishvili)

Table 2 provides a comparative evaluation of the different malware analysis methods, considering practical

criteria such as scalability, automation potential, expertise requirements, and relevance to SOC and DFIR

operations. The results show that static analysis is highly scalable and easily automated, making it an

effective first step in large-scale triage workflows. Dynamic and network forensics offer stronger behavioral

insights but require moderate expertise and are only partially scalable due to the need for controlled

environments. Memory forensics, while indispensable for fileless malware detection, remains resource-

intensive and requires advanced expertise, limiting its scalability in operational contexts. Reverse

engineering delivers unparalleled insights but is the least scalable and most expertise-dependent method,

making it suitable primarily for high-profile investigations such as APT campaigns. Hybrid and automated

approaches emerge as the most promising direction, balancing scalability and accuracy by combining static,

dynamic, and forensic techniques. Their integration into SOC pipelines provides both operational efficiency

and resilience against evolving threats.

4. CONCLUSION

This review provided a comprehensive synthesis of malware analysis techniques, structured around static

analysis, dynamic execution, memory and network forensics, reverse engineering, and hybrid approaches.

The findings confirm that each method has specific advantages and inherent limitations. Static analysis is

rapid and scalable but easily bypassed by obfuscation, while dynamic methods reveal runtime behavior but

remain vulnerable to evasion. Memory and network forensics uncover hidden artifacts and communications

but require advanced expertise. Reverse engineering delivers the most detailed understanding yet is highly

resource-intensive.

The comparative evaluation, supported by two complementary tables, highlights the duality between

technical capabilities and operational applicability. Static and dynamic methods are essential for large-scale

triage, whereas memory forensics and reverse engineering are best suited for in-depth incident response

and threat intelligence. Hybrid and automated analysis emerge as the most promising direction, combining

the strengths of each method while mitigating their individual weaknesses.

In conclusion, the study underscores the importance of layered, automated, and standardized malware

analysis pipelines that integrate multiple techniques and leverage frameworks such as MITRE ATT&CK

and large-scale datasets. Such integration is vital to strengthen the resilience of Security Operations Centers

and DFIR teams against increasingly sophisticated threats.

ACKNOWLEDGEMENTS

This work acknowledges the contributions of the research community in the field of malware analysis,

whose tools, frameworks, and datasets provided the foundation for this review. In particular, appreciation

is extended to the developers of IDA Pro, Ghidra, FlareVM, REMnux, Volatility, and MITRE ATT&CK,

whose efforts have advanced the practice of static, dynamic, forensic, and reverse engineering

methodologies. The availability of open-access datasets such as EMBER and SOREL-20M has also been

instrumental in supporting the development and evaluation of machine learning–based approaches. The

synthesis presented in this paper benefits greatly from the collective knowledge shared by academics,

practitioners, and organizations dedicated to improving cybersecurity.

Page | 9
ABC et al., International Journal of Innovation and Modern Applied Science, Vol. 11 Issue 1, December 2025

REFERENCES
Artem Dinaburg, P. R. (2008). Ether: malware analysis via hardware virtualization extensions.

Case Andrew, G. G. (n.d.). Memory forensics: The path forward.

Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiaoyong Zhou, XiaoFeng

Wang. (n.d.). Effective and Efficient Malware Detection at the End Host.

Daniele Ucci, L. A. (n.d.). Survey of machine learning techniques for malware analysis.

Hex-Rays. (2023). IDA Pro disassembler and debugger. (n.d.). Retrieved from https://hex-rays.com/

Hyrum S. Anderson, P. R. (n.d.). EMBER: An Open Dataset for Training Static PE Malware Machine

Learning Models.

L. Nataraj, S. K. (n.d.). Malware images: visualization and automatic classification.

Michael Hale Ligh, Andrew Case, Jamie Levy, AAron Walters . (n.d.). The Art of Memory Forensics:

Detecting Malware and Threats in Windows, Linux, and Mac Memory.

MITRE. (2023). MITRE ATT&CK: Adversarial tactics, techniques, and common knowledge. (n.d.).

Retrieved from https://attack.mitre.org/

National Security Agency. (2019). Ghidra Software Reverse Engineering Framework. (n.d.). Retrieved

from https://github.com/NationalSecurityAgency/ghidra

Richard Harang, E. M. (n.d.). SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE Detection.

Thomas Raffetseder, Christopher Kruegel & Engin Kirda . (n.d.). Detecting System Emulators.

Yan Shoshitaishvili, R. W. (n.d.). SOK: (State of) the Art of War: Offensive Techniques in Binary Analysis.

