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ABSTRACT:  The continuous evolution of malware represents a major challenge for modern 

cybersecurity. Attackers increasingly rely on obfuscation, encryption, and anti-analysis techniques 

to evade detection, rendering traditional signature-based defenses insufficient. In this context, 

malware analysis has become essential to understand threats, extract indicators of compromise, and 

support incident response. This manuscript provides a structured review of the main malware 

analysis techniques, organized into four complementary levels: triage, static analysis, dynamic 

analysis, and advanced reverse engineering. Each method is discussed in terms of methodology, tools, 

advantages, and limitations. The review highlights that static analysis provides rapid and safe 

insights but is ineffective against sophisticated obfuscation and packing methods. Dynamic analysis 

captures runtime behaviors and network communications, though it remains vulnerable to evasion 

strategies. Memory and network forensics enhance visibility by revealing hidden processes, fileless 

malware, and anomalous connections. Reverse engineering offers the most comprehensive 

understanding of malicious logic, yet it is highly time-consuming and requires specialized expertise. 

Overall, the findings confirm that no single method is sufficient; instead, hybrid approaches that 

integrate static, dynamic, and forensic techniques are required. The study also emphasizes the role 

of standardized frameworks and large-scale datasets in improving reproducibility and enabling 

automation in malware detection and analysis. 

Keywords: malware analysis, static analysis, dynamic analysis, reverse engineering, memory forensics, 

network forensics, sandboxing, incident response, MITRE ATT&CK.  

 

 

1. INTRODUCTION 

 Malware has become one of the most prevalent threats in modern cyberspace, targeting individuals, 

enterprises, and critical infrastructures. Its rapid evolution, driven by techniques such as obfuscation, 

encryption, and the use of living-off-the-land binaries (LOLBins), significantly complicates detection and 

defense. Traditional signature-based systems are increasingly insufficient, which underlines the importance 

of malware analysis as a cornerstone of cybersecurity.  
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The purpose of this study is to provide a structured review of malware analysis methodologies, synthesizing 

results from both academic research and practitioner experience. By examining multiple layers—static 

analysis, dynamic analysis, memory and network forensics, and advanced reverse engineering—this paper 

identifies strengths, weaknesses, and applicability across different contexts. Static approaches offer rapid 

insights but are limited against modern evasion techniques, while dynamic methods capture behavioral 

patterns at runtime but face challenges from VM detection (Artem Dinaburg, 2008). Memory and network 

analysis complement these approaches by providing visibility into runtime artifacts and malicious 

communications. Reverse engineering remains indispensable for advanced persistent threats (APTs), 

offering deep technical insights at the cost of time and expertise (Yan Shoshitaishvili). 

By aligning the analysis with standardized frameworks such as MITRE ATT&CK (MITRE. (2023). MITRE 

ATT&CK: Adversarial tactics, techniques, and common knowledge., n.d.) and leveraging datasets 

including EMBER (Hyrum S. Anderson) and SOREL-20M (Richard Harang), this review aims to 

contribute reproducible methodologies and comparative insights for both academic researchers and security 

operations teams. 

2. MATERIALS AND METHODS 

This review was conducted through a systematic survey of academic literature, technical reports, and 

practitioner blogs related to malware analysis. The methodology was designed to ensure reproducibility 

and completeness, and it followed four complementary stages: triage, static analysis, dynamic analysis, and 

advanced reverse engineering. 

Literature Search Strategy. Academic articles, conference proceedings, and technical whitepapers 

published between 2010 and 2024 were selected from digital libraries such as IEEE Xplore, ACM Digital 

Library, and arXiv. Keywords including “malware static analysis,” “dynamic analysis,” “memory 

forensics,” and “reverse engineering malware” guided the search. The inclusion criteria prioritized papers 

that described methodologies, comparative studies of tools, and practical case studies (Daniele Ucci), (L. 

Nataraj). 

Tools and Environments. Widely adopted frameworks and toolkits were examined to illustrate the 

implementation of analysis methods. For static analysis, tools such as IDA Pro, Ghidra, Binary Ninja, and 

capa were included (Hex-Rays. (2023). IDA Pro disassembler and debugger., n.d.), (National Security 

Agency. (2019). Ghidra Software Reverse Engineering Framework., n.d.). Dynamic analysis relied on 

sandbox environments such as FlareVM and REMnux, complemented with monitoring tools like Procmon, 

Sysmon, and Wireshark (Case Andrew). Memory forensics tools such as Volatility and Rekall were 

integrated for the extraction of runtime artifacts (Case Andrew). 

Reference Frameworks and Datasets. To standardize classification, the MITRE ATT&CK framework was 

adopted as a mapping reference for tactics and techniques (MITRE. (2023). MITRE ATT&CK: Adversarial 

tactics, techniques, and common knowledge., n.d.). Public malware datasets such as EMBER (Hyrum S. 

Anderson), SOREL-20M (Richard Harang), and BODMAS were included to support machine learning-

based evaluations. 

Synthesis Approach. Each method was described along four axes: methodology, tooling, advantages, and 

limitations. Comparative tables were used to highlight differences across approaches, while case studies 

provided practical context. This structure ensures that the findings are accessible to both academic 
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researchers and professionals in Security Operations Centers (SOC) and Digital Forensics and Incident 

Response (DFIR) teams. 

3. RESULTS AND DISCUSSION 

This section may each be divided by subheadings or may further divided into next heads as shown below. 

 

3.1. Static Analysis 

Static analysis refers to the examination of malware binaries without execution. Techniques include string 

extraction, header inspection, entropy measurement, and disassembly. These methods enable analysts to 

identify imported libraries, suspicious API calls, and embedded resources (Hex-Rays. (2023). IDA Pro 

disassembler and debugger., n.d.), (National Security Agency. (2019). Ghidra Software Reverse 

Engineering Framework., n.d.). Tools such as IDA Pro, Ghidra, Binary Ninja, and capa remain the most 

widely adopted for this purpose. 

The advantages of static analysis lie in its speed, safety, and ability to provide initial insights. It allows the 

identification of potential persistence mechanisms, cryptographic functions, and obfuscation indicators 

(Daniele Ucci), (L. Nataraj). Moreover, the extraction of features such as control flow graphs and opcode 

frequencies support the application of machine learning models for malware classification (Hyrum S. 

Anderson). YARA rules are also commonly generated from static signatures, enabling rapid detection in 

SOC environments. 

However, static methods face critical limitations. Packed or encrypted samples often hide their true 

behavior, rendering static disassembly incomplete or misleading. Furthermore, advanced obfuscation 

techniques such as control-flow flattening and string encryption reduce the interpretability of static results. 

These drawbacks emphasize the need for complementary methods. In conclusion, static analysis remains 

indispensable for triage and IOC extraction but cannot serve as a standalone technique in modern threat 

landscapes. 

3.2. Dynamic Analysis 

Dynamic analysis involves executing malware in a controlled environment to observe its behavior at 

runtime. Sandboxing platforms such as FlareVM, REMnux, and ANY.RUN, combined with tools like 

Procmon, Sysmon, and Wireshark, are widely used to capture changes in the file system, registry, processes, 

and network traffic (Case Andrew). 

The results show that dynamic methods are highly effective for detecting persistence mechanisms, 

command-and-control (C2) communications, and decrypted payloads (MITRE. (2023). MITRE ATT&CK: 

Adversarial tactics, techniques, and common knowledge., n.d.), (Case Andrew). API call monitoring and 

system call tracing provide detailed behavioral fingerprints that can be used for clustering malware families. 

These observations are often mapped to the MITRE ATT&CK framework to classify adversarial techniques 

(MITRE. (2023). MITRE ATT&CK: Adversarial tactics, techniques, and common knowledge., n.d.). 

Nonetheless, dynamic analysis suffers from significant challenges. Modern malware increasingly integrates 

anti-analysis mechanisms, such as VM detection, timing delays, and environment fingerprinting, which 

significantly reduce the reliability of sandbox-based results (Artem Dinaburg, 2008). In addition, certain 

behaviors are triggered only under specific conditions, requiring interactive or guided execution. 
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Critically, dynamic analysis provides a realistic view of runtime activities but requires hardened 

environments. Countermeasures such as stealth instrumentation, bare-metal sandboxes, and hardware-

assisted monitoring are being explored to bypass evasion techniques (Clemens Kolbitsch, Paolo Milani 

Comparetti, Christopher Kruegel, Engin Kirda, Xiaoyong Zhou, XiaoFeng Wang). While highly valuable, 

dynamic analysis must be carefully integrated with static and forensic methods to deliver comprehensive 

insights. 

3.3 Memory and Network Forensics 

Memory forensics has emerged as a powerful technique to detect hidden malware components, fileless 

infections, and runtime artifacts that evade traditional methods. Tools such as Volatility and Rekall allow 

investigators to reconstruct process lists, extract injected code, and analyze kernel modules (Case Andrew). 

Similarly, memory acquisition tools like WinPMem and LiME are essential for capturing evidence during 

live incident response. 

Research demonstrates that memory analysis is particularly effective for uncovering in-memory persistence 

mechanisms and retrieving decrypted configurations. Fileless malware campaigns, which rely on 

PowerShell or WMI for execution, can often only be detected through memory snapshots. 

In parallel, network forensics focuses on analyzing traffic generated by malware. Tools like Wireshark and 

Zeek enable analysts to detect anomalies, C2 protocols, and domain fronting techniques (Case Andrew). 

The correlation of captured traffic with MITRE ATT&CK techniques supports standardized threat 

intelligence reporting (MITRE. (2023). MITRE ATT&CK: Adversarial tactics, techniques, and common 

knowledge., n.d.). 

Despite their effectiveness, both memory and network analysis face limitations. Memory forensics requires 

specialized expertise and careful handling to avoid altering evidence (Michael Hale Ligh, Andrew Case, 

Jamie Levy, AAron Walters ). Network analysis is constrained when malware uses encrypted channels, 

covert DNS tunneling, or fast flux domains. Nonetheless, these approaches play a central role in DFIR by 

bridging the gap between static/dynamic observations and real-world artifacts. 

3.4 Reverse Engineering and Anti-analysis 

Reverse engineering represents the most comprehensive yet complex approach to malware analysis. By 

disassembling or decompiling binaries, analysts can reconstruct malicious logic and understand its full 

capabilities. Tools such as IDA Pro, Ghidra, Radare2, x64dbg, and WinDbg are essential for this process 

(Hex-Rays. (2023). IDA Pro disassembler and debugger., n.d.), (National Security Agency. (2019). Ghidra 

Software Reverse Engineering Framework., n.d.). 

This method enables the extraction of encryption algorithms, configuration decryption routines, and 

command execution logic (Daniele Ucci), (Thomas Raffetseder, Christopher Kruegel & Engin Kirda ). 

Advanced techniques such as symbolic execution and taint analysis assist in uncovering hidden behaviors, 

while automated unpackers facilitate the analysis of packed binaries. 

However, reverse engineering is highly time-consuming and requires significant expertise. Malware 

authors actively implement anti-analysis techniques such as debugger detection, control-flow obfuscation, 

and API redirection (Artem Dinaburg, 2008). For example, stealth breakpoints have been observed in 

advanced samples to mislead analysts during debugging. 
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From a critical perspective, reverse engineering is indispensable for APT investigations, malware family 

attribution, and threat intelligence. Yet, due to its complexity, it is impractical for large-scale automation. 

Future perspectives point toward AI-assisted reverse engineering and improved automated deobfuscation 

frameworks, which may help reduce manual workloads (Yan Shoshitaishvili). 

3.5 Hybrid and Automated Analysis 

Hybrid analysis has been proposed as a solution to overcome the limitations of standalone methods. By 

combining static feature extraction with dynamic behavior monitoring, hybrid approaches provide a more 

holistic understanding of malware. For instance, static signatures can rapidly classify known families, while 

dynamic execution reveals runtime payloads and network indicators. 

Automated pipelines further enhance this process by integrating multiple tools into unified workflows. 

Cloud-based sandboxes allow scalability and collaborative analysis, while frameworks such as Cuckoo 

Sandbox demonstrate how hybrid models can operate in practice. 

The role of artificial intelligence has also expanded significantly. Machine learning models trained on large 

datasets such as EMBER (Hyrum S. Anderson) and SOREL-20M (Richard Harang) achieve promising 

results in predicting malicious behavior. Deep learning approaches leverage opcode sequences, control flow 

graphs, and API call graphs to detect unknown malware variants with high accuracy. 

Nevertheless, hybrid and AI-based approaches face critical challenges, including adversarial evasion, 

model interpretability, and the need for constant retraining with updated datasets. Despite these issues, 

hybrid and automated methods represent the future of malware analysis, enabling SOCs and DFIR teams 

to scale operations and improve detection. 

3.6 Cross-method Discussion 

The comparative analysis across static, dynamic, forensic, and reverse engineering approaches 

demonstrates that no single method can provide a complete solution to modern malware threats. Each 

technique offers unique insights but also exhibits inherent limitations in terms of accuracy, scalability, and 

practicality. To better illustrate these findings, the results of the review are organized into two 

complementary comparative tables.  

Table 1. Malware Analysis Methods 

Method Example Tools Advantages Limitations References 

Static 
Analysis 

IDA Pro, Ghidra, 
Binary Ninja, 

capa 

Fast, safe, allows 
initial classification, 

signature/IOC 
extraction 

Ineffective 
against 

obfuscation, 
packing, 

encryption 

(Daniele Ucci), (L. Nataraj), 
(Hex-Rays. (2023). IDA Pro 

disassembler and debugger., 
n.d.), (National Security 
Agency. (2019). Ghidra 

Software Reverse 
Engineering Framework., 

n.d.), (Hyrum S. Anderson), 
(Thomas Raffetseder, 

Christopher Kruegel & Engin 
Kirda ) 
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Dynamic 
Analysis 

FlareVM, 
REMnux, 
Procmon, 
Sysmon, 

Wireshark, 
ANY.RUN 

Observes real 
behavior, detects 

persistence, 
network traffic, 

decrypted payloads 

Vulnerable to 
anti-VM/sandbox 

detection, 
requires strong 

isolation 

(MITRE. (2023). MITRE 
ATT&CK: Adversarial tactics, 

techniques, and common 
knowledge., n.d.), (Artem 

Dinaburg, 2008), (Case 
Andrew), (Clemens 

Kolbitsch, Paolo Milani 
Comparetti, Christopher 

Kruegel, Engin Kirda, 
Xiaoyong Zhou, XiaoFeng 

Wang) 

Memory 
Forensics 

Volatility, Rekall 

Detects fileless 
malware, recovers 
runtime artifacts 

and hidden 
processes 

Complex 
acquisition, 

requires expertise 
and advanced 

tooling 

(Case Andrew), (Michael 
Hale Ligh, Andrew Case, 

Jamie Levy, AAron Walters ) 

Network 
Forensics 

Wireshark, Zeek 

Identifies C2 
protocols, 
anomalies, 

encrypted tunnels 

Limited visibility if 
malware uses 

covert channels 
or strong 

encryption 

 (MITRE. (2023). MITRE 
ATT&CK: Adversarial tactics, 

techniques, and common 
knowledge., n.d.) 

Reverse 
Engineering 

x64dbg, 
WinDbg, 

Radare2, Ghidra 

Deep 
understanding of 

malware logic, 
enables unpacking 

and decryption 

Time-consuming, 
high expertise 

required, 
frequent anti-

analysis 
mechanisms 

(Daniele Ucci), (Hex-Rays. 
(2023). IDA Pro disassembler 

and debugger., n.d.), 
(National Security Agency. 

(2019). Ghidra Software 
Reverse Engineering 

Framework., n.d.), (Thomas 
Raffetseder, Christopher 
Kruegel & Engin Kirda ), 

(Artem Dinaburg, 2008), (Yan 
Shoshitaishvili) 

Table 1 presents the technical perspective by summarizing the main tools, strengths, and weaknesses of 

each method. This offers a structured view of how different techniques operate at the analytical level. Table 

2 extends this discussion to the operational domain by evaluating scalability, automation potential, expertise 

requirements, and applicability within SOC and DFIR environments. Together, these tables bridge the gap 

between theoretical capabilities and real-world usability, providing both researchers and practitioners with 

a dual framework for understanding and applying malware analysis techniques. 
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Table 2. Comparative Evaluation of Malware Analysis Methods 

 

Method Scalability Automation 
Expertise 
Required 

SOC/DFIR 
Relevance 

References 

Static Analysis High High 
Low to 

Moderate 

Strong for 
triage, IOC 
extraction 

(Daniele Ucci), (L. Nataraj), 
(Hex-Rays. (2023). IDA Pro 

disassembler and debugger., 
n.d.), (National Security 
Agency. (2019). Ghidra 

Software Reverse 
Engineering Framework., 

n.d.), (Hyrum S. Anderson), 
(Thomas Raffetseder, 

Christopher Kruegel & Engin 
Kirda ) 

Dynamic Analysis Moderate Moderate Moderate 

Strong for 
behavior 

profiling, C2 
detection 

(MITRE. (2023). MITRE 
ATT&CK: Adversarial tactics, 

techniques, and common 
knowledge., n.d.), (Artem 

Dinaburg, 2008), (Case 
Andrew), (Clemens 

Kolbitsch, Paolo Milani 
Comparetti, Christopher 

Kruegel, Engin Kirda, 
Xiaoyong Zhou, XiaoFeng 

Wang) 

Memory Forensics Low Low High 

Essential for 
fileless 

malware and 
live response 

(Case Andrew), (Michael 
Hale Ligh, Andrew Case, 

Jamie Levy, AAron Walters ) 

Network Forensics Moderate Moderate Moderate 

Valuable for 
C2 detection, 

lateral 
movement 

analysis 

(MITRE. (2023). MITRE 
ATT&CK: Adversarial tactics, 

techniques, and common 
knowledge., n.d.) 

Reverse 
Engineering 

Very Low Very Low Very High 

Indispensable 
for APT 

attribution, 
threat 

intelligence 

(Daniele Ucci), (Hex-Rays. 
(2023). IDA Pro disassembler 

and debugger., n.d.), 
(National Security Agency. 

(2019). Ghidra Software 
Reverse Engineering 

Framework., n.d.), (Thomas 
Raffetseder, Christopher 
Kruegel & Engin Kirda ), 
(Artem Dinaburg, 2008), 

(Yan Shoshitaishvili) 

Hybrid/Automated High High Moderate 
Crucial for 

modern SOC 
(Hyrum S. Anderson), 

(Richard Harang), (Clemens 
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pipelines and 
scalable 

detection 

Kolbitsch, Paolo Milani 
Comparetti, Christopher 

Kruegel, Engin Kirda, 
Xiaoyong Zhou, XiaoFeng 

Wang), (Yan Shoshitaishvili) 
 

Table 2 provides a comparative evaluation of the different malware analysis methods, considering practical 

criteria such as scalability, automation potential, expertise requirements, and relevance to SOC and DFIR 

operations. The results show that static analysis is highly scalable and easily automated, making it an 

effective first step in large-scale triage workflows. Dynamic and network forensics offer stronger behavioral 

insights but require moderate expertise and are only partially scalable due to the need for controlled 

environments. Memory forensics, while indispensable for fileless malware detection, remains resource-

intensive and requires advanced expertise, limiting its scalability in operational contexts. Reverse 

engineering delivers unparalleled insights but is the least scalable and most expertise-dependent method, 

making it suitable primarily for high-profile investigations such as APT campaigns. Hybrid and automated 

approaches emerge as the most promising direction, balancing scalability and accuracy by combining static, 

dynamic, and forensic techniques. Their integration into SOC pipelines provides both operational efficiency 

and resilience against evolving threats. 

 

4. CONCLUSION 

This review provided a comprehensive synthesis of malware analysis techniques, structured around static 

analysis, dynamic execution, memory and network forensics, reverse engineering, and hybrid approaches. 

The findings confirm that each method has specific advantages and inherent limitations. Static analysis is 

rapid and scalable but easily bypassed by obfuscation, while dynamic methods reveal runtime behavior but 

remain vulnerable to evasion. Memory and network forensics uncover hidden artifacts and communications 

but require advanced expertise. Reverse engineering delivers the most detailed understanding yet is highly 

resource-intensive. 

The comparative evaluation, supported by two complementary tables, highlights the duality between 

technical capabilities and operational applicability. Static and dynamic methods are essential for large-scale 

triage, whereas memory forensics and reverse engineering are best suited for in-depth incident response 

and threat intelligence. Hybrid and automated analysis emerge as the most promising direction, combining 

the strengths of each method while mitigating their individual weaknesses. 

In conclusion, the study underscores the importance of layered, automated, and standardized malware 

analysis pipelines that integrate multiple techniques and leverage frameworks such as MITRE ATT&CK 

and large-scale datasets. Such integration is vital to strengthen the resilience of Security Operations Centers 

and DFIR teams against increasingly sophisticated threats. 
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